[image: image1.wmf]
Adilas, LLC.
517 Blake Street
Salida, CO 81201

435.881.1536
Planning, Specifications, Functions, and General Project Overview
Use this worksheet to start out a new project. Once you have gone through things, feel free to add, change, delete, or remove un-needed items and/or parts as needed. Think of this document as a general outline and starting place.
Who:

1. Who is in charge of project management and project architecture? "Developing without project management is like a runaway train." – Eric Tauer, Salida, CO
2. Who is part of the planning sessions? Ideally we like to - build and plan as if for years.
3. Who is funding the project? What is the budget? How is it funded? Is the project fully funded (start to end) or will it be on the fly or hourly funding?
4. Who is on the team? What are their roles? (customer contact, leads, developers, testers, code sign-off, etc.) Put one person in charge, groups and committees can be a pain.
5. Are there back-up persons for the different roles and pieces?
6. Who will be the peer reviewers?

7. Who will be in charge of approvals, sign-offs, milestones, etc.?

8. Who is available to help with and/or go to if there are questions? (other resources)
9. Who is going to do the training and testing?
What (scope, requirements, design, specs, documentation):

General:

1. What is the project name?

2. What is the branch name? Element of time for the project management (required)?
3. What is the project timeline? (start date, due date, end date, milestones, etc.)
4. What is the priority and urgency of the project and how fast does it need to be finished? (good pace, neck breaker, sprint, slow and steady, eternal)
5. To help with code sign-off and organization, consider making specific documents for things like: Functional Requirements, Technical Specifications, Design Specifications, etc.
a. Make sure to have the different parties that are involved with each document have a chance to read and provide feedback on those documents before sign-off.

b. Based on the size of the project, the different documents may or may not be needed.

6. How frequent do we need to report on the status and/or check-in?

Scope & Light History:

1. What is the general overview of the project? (general audience/user)
2. Is this project internal core, external, custom, standalone, or other?

3. What is unique or special about this project? What pieces are completely new? Don't customize things if you can find a way to standardize things. Think bigger picture. Also, you may want to check in and see if there are other similar and/or related projects that are in the works. That may affect your plans.

Requirements (geared for the customers/clients):

1. Functionality, features, and expectations?

a. Reminders:

i. Keep it customer, client, and end-user focused. Think general audience.
ii. Consider communication, consistency, project naming, and verbage? Early planning will help with custom verbage and naming conventions that will form a basis for the project. This will help everyone get on the same page with names, pages, features, and flow – early in the process.
iii. Help to educate the client in how the process works. Setup expectations on how the process will flow and roll out. Encourage the clients to play the game.
iv. What do we need to protect them? To protect us?

1. As a note, our using a form of documentation is a form of protection for both parties.
v. Is it easy to follow? Think about organization such as outlines and sections (numbers and bullets)? Did you create a table of contents?
vi. Help the requirements set bounds - both - it will do this and this and it won't do this and this. Cover both sides. Set a clear ending and/or strategy for deploying and sustaining the project. Nobody wants a never-ending project…

Design:

1. What about mock-up’s for the data and user interfaces (UI or user experience)? Look and feel stuff? Creative Specs?
2. Is it easy to use with and without training?
3. How many clicks does it take to complete the process?
4. Did you get an approval/sign-off on the user interface and design pieces? By the project manager, lead, and client?
5. What about page size and the amount of data? How are you going to show and/or display that?

Technical Specs (geared for developers and backend programmers):

1. Where do you start? What comes in the middle? And How do you finish or make sure that things are done correctly?
2. Are there certain things that need to be done in sequence?
3. Can I use any other pieces (reuse, copy, paste, alter, etc.)?

a. Is this a copy and paste job? If yes, from where? Was it cleaned up?
4. What about security and options?
a. Settings and Permissions? How flexible do we want to make it?

b. Is this a cross corp job? This involves more settings and permissions. We have to maintain the data integrity and security. Both parties need to opt in to the arrangement in one way or another.
5. Database planning? Create, Insert, Update, Views, or Alter?

a. If you are changing a database, did you script your changes? Did you think about any water already under the bridge (update older records)? What about new inserts? What about being able to update and/or edit values? What reports or select queries need the new data? What about web/API documentation and samples, did you cascade the new database stuff to things outside the secured environment?
b. What about defaults, validation, pagination, field length, and other details? Does the database match the UI (user interface)?
6. What about cascading new changes and code throughout the site and updating all older code? What other places does it touch (expand on direct touches, do some global searches, and think about cause and effects)?
a. When thinking of cascading code and features… Think about databases, page code, cfc’s, functions, ecommerce, web/API sockets, custom, black boxes, etc. Maybe go through each section and make a comment.
7. Consider things such as: general usage, common holes, pit falls, we've been burned here before (warnings), trickle-down effect (cause and effect relationships), one-to-many, one-to-one, corp-specific, automated, short cuts, custom (naming, sorting, placement, aliases, rules, settings), permissions, special settings (corp, location, user), and the list goes on.
8. Is the project ready to hand off to someone else? If not, what else needs to be documented?

Documentation:

Prep and On Going:

1. What about research and looking at the backlogs?

2. What about recording the wish list items for the project? These are not part of the original scope but help us think beyond the current project (future development and ideas, expanded vision, how could it be more usable by other clients or industries, etc.).

3. What about other documentation? (did you record and attach emails, planning, scratch paper, test results, post-it notes, etc.)

Educational Documentation:
1. Help files?

2. News and updates? Help educate and promote the new features. Highlight new functionality.
3. Web/API documentation? (this is for outside developers who may be using our data as a service for their clients)
How (what is the process):

General Process Options and Styles:

1. What software development model are you looking to use? Scrum/Agile (focused sprints and rapid deployment), Waterfall (big design and then build – one shot), Spiral (tons of prototypes - build and break until you get a final product), Lean (do as little work as possible and keep it simple), Feature Driven (building blocks or one feature at a time), Just-In-Time (JIT) (plan and do as you go), or Fake It?

2. How are you going to break up and measure milestones, progress, and timelines?

a. Possible milestones could be: planning, research, concepting, coding, sign-off, merging, deploying, documentation, training, maintenance, etc.
3. How are you going to pay people on the project? What are the specifics: Bid, contract, hourly, commission, stepped (milestones), bonuses, etc.
a. How do you manage the balance between payment and deliverables including final stage stuff like code sign-off, education, and maintenance?
4. How is the client reacting to the process? As the project progresses, try to read what and how the client is feeling. Are they digging it, hating it, sick of it, frustrated, excited? Adjust as needed.
Brainstorming, Planning, Design, and Documentation Phase:

- “Make your plan and then work your plan.” Quote from Steve Berkenkotter
1. Remember to match the project development process with the client and the trust level of the client.
2. Remember to keep and save your emails. Possible suggestions:
a. Split up emails based on topics and minimize big long chains.
b. Have a good subject line to help with searching and organization.
c. Write as if each email will someday be read in court. We hope not, but you never know…
3. What is your plan for client communication? How often? Any key points or phases? What types of communication (email, phone, online meetings, texts, written, etc.)?
4. What issues might you encounter during the project (unknowns, new technologies, new code language, new area of adilas, etc.)? What is your plan to overcome and deal with these issues? Think risk management.

a. What happens if other projects come up or someone has to leave to do something else (sick, leave, quit, health issues, school, etc.)? What about a partially finished project and someone else needs to finish it? Think along these lines… maybe list the what if’s…
5. Is this project tight and specific (detailed specs) or is it more flexible (open to input/ideas)? How much freedom do we give the developers in the process? Is there a check-up and check-in type process? What is it (daily, weekly, other)?
6. What is your design prototype going to look like? Is it a wireframe (recommended), flowchart, graphic mock-up, static HTML page, or a sitemap? Was it approved (client, project manager, lead) and added to the project documentation?

a. When using a wireframe - use callouts to clarify and define functionality. Wireframes include blocks, specific functionality, lines, placeholders, explanations, instructions, and general flow. Don't worry about the graphics or colors. Keep it simple and unpolished. It is ok to keep it slightly rough. Allow for changes as needed.
7. Create use cases and scenarios that potential users would need to go through in order to use the product and/or features to achieve their goal. This will help others catch the vision of what is supposed to be happening with a product and/or feature. Often you will either use a use case or specific specs, usually not both.

a. Think of the bell curve type model – try to tackle the biggest part as a basic flow and then deal with the other exceptions. At some point, there will be a point of diminishing returns. Find the balance between normal and exceptions. Often, the final parts of the project take the longest and may be the hardest due to exceptions and special cases.
8. Did you attach all documentation to the project element of time? At the end, did you clean-up and push up the latest documentation?

a. You may need to decide if you are going to version or overwrite your documentation.

Implementation and Building Phase:

1. How well does each team member understand the project and the plan? Does it make sense to all parties? Maybe do some kind of a check for understanding (explain it back, have them talk about the vision and scope, expectations, etc.).
2. What is your building phase going to look like? What is your release and review process? This may be different per project. Where possible, we recommend a number of mini releases, demos, and multiple iterations. Get client feedback when and where possible (they like to see progress and be a part of the building process).
3. You are required to use Git and Bit Bucket. Are there any specifics on the version control for this project? For example: single branches, branches off of a main project branch, mixed branches, delayed merges, etc.

a. Anything that is core Adilas is required to be merged into the master branch. If it is fully custom or straight black box, we will leave it up to you. If it is merged into master, it stands a better chance of being updated if major changes or updates are needed. If left out of master, it is virtually on its own.

4. How are you going to deal with normal feature requests vs. a change request or change order? You need to have a plan to deal with change orders and feature creep. Change orders could be alterations, expansions, simplifications, or enhancements to a project that happen mid-stream. It is ok to draw lines and push things towards future projects as needed. Make sure you cover yourself – costs, budgets, timelines, expectations, etc. – all of these things may be affected by a change order. Take the time that is needed here, it can burn a major hole in your piggy bank if left out…
5. When meeting with a client and/or other players, you should have an agenda. Keep good notes and report any decisions, ideas, and changes. This is all part of your documentation and expectations. Think return and report.
6. Have you reread the documentation, requirements, meeting notes, changes, updates, and specs? How are you doing?

7. As you build and implement things, we highly recommend that you keep getting and recording ideas as they come up. Treat this kinda like “idea farming”. Let’s harvest those ideas (record them for the future)!

Testing, Review, and Sign-Off’s:

1. Did you go through the Adilas Developer’s Guide – Self Test? Can we break it? Did you go through it and bring it up to the standards?

2. Does it do what we want and need it to do (requirements)?
3. Did you run it through any use cases (story form – flow from the user’s views and needs)?

a. Did you have a fresh pair of eyes look at the project (someone not familiar with the project)? From start to finish? How much education was needed to get them going? What places did they fall off the road? How can we fix that? Maybe repeat as needed.

4. What about test cases or tests where a user walks through the process? These are normally step-by-step scenarios to produce specific outputs. This is basically showing that it does work and that the requirements are being met. Does it respond like you expected?

5. Optional. What about unit tests (automated tests)? These are preprogrammed tests (set input values) that may be run over and over again looking for certain outcomes (responses). The goal is to test all types of inputs such as: good, bad, ugly, blank, boundary, conflicting, wrong types, etc. We then check to see what outcomes occur including: validation, success messages, errors, return data, try/catches, etc. Basically, try to break things or find weakness or bugs. This helps to make sure things are still stable after changes have been made. This is specifically used for CFC’s and other special functions.

Deployment, Training, and Maintenance:

- "The top is only half way" - Building the project is only half way there. Think of the full trip and/or full project from start, clear to sustaining the project through other phases.
1. Is it really ready? Is it done or are you just done? Be honest… (
2. What is your maintenance plan? Future rounds? Next steps and improvements? Timeframes? Is it a standalone (do it once and don’t touch it again)? Does it tie into other projects?
4. What is your education and training plan? Do we need to let anybody know about the new features, code, or functionality? How are you going to roll out the training and education? Is there any marketing that needs to be done for this project? Are we talking help files, news and updates, demos, videos, keep it a secret (custom or internal), or other training? If we build a new feature and nobody knows how to use it or even knows that it exists, it is almost like not even having it.
Put Project Name Here

Page 2 of 7

