[image: image1.wmf]
Adilas, LLC.
517 Blake Street
Salida, CO 81201

435.881.1536
Project – Round 3 of Sub Inventory
Who:

1. Who is in charge of project management?
Brandon Moore will be the project manager for this project.

2. Who is part of the planning sessions? Ideally we like to - build and plan as if for years.
Brandon Moore, Steve Berkenkotter, Alan Williams

3. Who is funding the project? What is the budget? How is it funded? Is the project fully funded (start to end) or will it be on the fly or hourly funding?
This project will be funded by Adilas as an internal project. The funding will month to month. As we get further and get a full project scope, we will set some budget values.

4. Who is on the team? What are their roles? (customer contact, leads, developers, testers, code sign-off, etc.)
Brandon Moore – Project manager/developer

Steve Berkenkotter – Consultant/developer

Alan Williams – Consultant/developer/Lead

5. Are there back-up persons for the different roles and pieces?
No back-ups planned at this time.

6. Who will be the peer reviewers?

Any one of the three on the team could be a peer reviewer. That is Brandon, Steve, or Alan.
7. Who will be in charge of approvals, sign-offs, milestones, etc.?

Brandon will be setting up milestones and project specs. Alan may be involved with the sign-offs and such. Steve may also be asked for some sign-offs and approvals to help keep things on track.
8. Who is available to help with and/or go to if there are questions? (other resources)
Steve Berkenkotter, Shannon Moore, Kelly Whyman, other consultants, and any of the active clients that are running sub inventory.

9. Who is going to do the training and testing?
Brandon Moore and Steve Berkenkotter will be doing initial testing and training. We will then be training Shannon Moore and Shari Olin. We may also setup some training and have Russell Moore and Shannon Moore create some videos to help with the new flow and functionality. We may also schedule a live training session where we focus on these new changes and functionality.
What (scope, requirements, design, specs, documentation):

General:

1. What is the project name?

Round 3 of Sub Inventory
2. What is the branch name? Element of time for the project management (required)? Project start date?
Time Id # 2618 in the Adilas Shop.
Start Date: 5/9/17

3. What is the project timeline? (start date, due date, end date, milestones, etc.)
Yet to be determined
4. What is the priority and urgency of the project and how fast does it need to be finished? (good pace, neck breaker, sprint, slow and steady, eternal)
We would like to go with a good pace on this project. Most like broken up into smaller mini projects and releases.

5. How frequent do we need to report on the status and/or check-in?

This will be a current project. We anticipate some kind of check-in and/or communication a couple times a week. Most of that will be done in the morning developer’s meeting.

Scope & Light History:

1. What is the general overview of the project? (general audience/user)
This project is what we are calling “Round 3 of Sub Inventory”. Sub inventory deals with a parent/child relationship between the general inventory items (parts) within the system. Sub inventory touches both inbound (PO’s) and outbound parts and items (quotes and invoices). Lots of internal inventory tracking, reporting, and heavy interactions with the shopping cart and general sales process.

This project was also referred to as “packaging” or “sub packaging” as synonyms terms. Two other rounds have already been done on this project. Some of the earliest dates on this project go back to May of 2014. A number of planning sessions where done by Brandon and Steve until about August of 2015. At that point, the project was turned over to Garrett Kirshbaum to do Round 1.

The Round 1 project was somewhat limited in scope and was commissioned as somewhat of a pioneering effort. There were tons of brainstorming notes, a couple of videos, and tons of ideas but no formal documentation and/or planning. Brandon worked with Garrett on a number of pieces and Garrett ended up making some decisions and just running with things to get things up and working.

This building process was oked by both Brandon and Steve at the time. Adilas just needed someone to help push the ball forward. This was happening during the middle of the “Adilas Shop” era and no one was really in charge, no formal documentation, no specific development style, and management was spread super thin (no one to watch, oversee, sign-off, and approve things). Somewhat of a wild west time period. We have somewhat called that round “The rhino poking a hole in the wall”. To Garrett’s credit, he made it happen as it was formerly just in idea and concept form.

Following that release, we got tons of new feedback and started making changes. Round 1 was released in October and November of 2015. The initial outlay was around $8,000 to get things started. Adilas had users on the new features even while they were being built, tested, debugged, and released. Kinda crazy, but we got tons of good feedback from that.
Towards the November 2015 timeframe, Garrett ended up getting a different job and transferred the project back to Brandon and Steve. The project stayed at the Round 1 level until mid December of 2015. Round 2 was done by Brandon, Steve, and Calvin Chipman. Round 2 was from mid December of 2015 to August of 2016. Hundreds of hours of tweaking and changing took place during that timeframe. This round was a fairly major overhaul and somewhat of a giant patch job.
Some of the major changes were dealing with going from JSON storage (original way) to a more classic database model (relational database model). This allowed us to open up the sub inventory templates and make the attributes unlimited. We also added real data types (real numerics, real dates, or text entries) to the sub attributes. Tons of pages were lightly gone over and Steve and Brandon did most of the changes during joint work sessions. Code was released as it was fixed and/or patched.

Round 2 also contained a big push done by Calvin Chipman to help with the dynamic database components of the project. Lots of changes were done by Calvin in the window where he was working. As a side note, Calvin was working for a client who wanted the changes and Brandon and Steve were somewhat coaching him on where things needed to go and what to do. This was a huge help, as Adilas didn’t really have monies to pay for Calvin’s work, but Adilas helped out by working on other pages and coaching Calvin along while he worked for a paying client. Certain pieces were left out on purpose because of the depth of the changes that were needed. Round 2 was mostly done by August 2016 with additional patching and stabilizing of the sub inventory features until January of 2017.
The Round 3 project for sub inventory officially started in May of 2017. The plans include a number of re-writes, stabilizers, standardizing, and some new and additional features. Some of the sub pieces of this project are:
· Formal Planning – Multiple Converging Projects

· Sub inventory is a major factor in the current converging projects. We need a plan that will help us know where we are going and how the pieces play together. We are seeing: Sub inventory, parent/child relationships, mini conversion, discount rules, pricing engines (matrixes), sales and promotions, loyalty points (special accounts), custom labels, world building (splitting up databases), smart cart logic, ecommerce, and new reports and financials requirements all coming together. We need a plan for how to deal with all of these converging projects.
· Sub Part Categories & Category Inheritance

· Sub part categories deals with the ability to stack and organize categories for parts and general inventory items. Currently, there is only one level deep that is allowed for part categorizes. We are seeing needs both internally and externally (eCommerce) for sub part categories. This may end up helping us with pricing models and discount rules and assignments.

· Mini Conversion
· A conversion is where you have a single item but you want to buy or sell it as a different unit of measure. For example: grams, ounces, pounds, etc. Our plan here is to build the mini conversion as a sub or grandchild of the sub inventory (normal parent/child relationships). This will also include what items have been created, put on hold, claimed, sold, and/or removed from available options.

· Logic & Output Changes

· Currently the sub inventory logic follows a different path than most other pieces in the system. Ideally, we like to put the main logic and database calls up higher on the page. We then show the output and loop over items that have already been pulled into memory vs. doing numerous database calls from within a report or output loop. This part of the project will be a complete re-write of the logic and how it flows. The output will then be affected by the way the reports and output get the data and/or look things up.

· Parent/Child Rules & Settings

· The deeper we get into sub inventory, we are seeing that different companies want to use and run things differently. The new parent/child rules and settings will deal with how they see the subs, what to show (open, disabled, closed, or all), how to display things, and what system defaults will be used.

· Pricing Matrixes & Tiered Pricing
· Currently each parent item may only hold one price or marked-up price. We are seeing all kinds of needs for other options. This could be preset pricing matrixes, smart group buttons (existing tiered pricing), prices per sub, prices per mini conversion, sales and promotions, discount models, and other pricing models. This project may end up hitting a number of existing pieces as well as create new options. We may even take things out to a bulk web pricing model.
· Simple Sizes & Colors

· Sub inventory is setup to handle sub attributes. We may work on some standard ways to incorporate sizes and colors. Those two attributes are used over and over again and might be a great preset and/or option with minimal work or effort.

· Recipe/Builds & Sub Inventory

· Currently, sub inventory is not built out far enough to be used in recipe/builds. This is for things like just in time sales, groups, kits, and other builds. It is also used in mini manufacturing and internal builds (changing products by cutting, chopping, packaging, heating, cooking, painting, combining, etc.).

· Discount Rules

· Subs In eCommerce Land

· Custom Labels & QR Codes

· Using Elements of Time To Track Subs

2. Is this project internal core, external, custom, standalone, or other?

3. What is unique or special about this project? What pieces are completely new?

Requirements (geared for the customers/clients):

1. Functionality, features, and expectations?

a. Reminders:

i. Keep it customer, client, and end-user focused. Think general audience.
ii. Consider communication, consistency, project naming, and verbage? Early planning will help with custom verbage and naming conventions that will form a basis for the project. This will help everyone get on the same page with names, pages, features, and flow – early in the process.
iii. Help to educate the client in how the process works. Setup expectations on how the process will flow and roll out. Encourage the clients to play the game.
iv. What do we need to protect them? To protect us?

1. As a note, our using a form of documentation is a form of protection for both parties.
v. Is it easy to follow? Think about organization such as outlines and sections (numbers and bullets)? Did you create a table of contents?

Design:

1. What about mock-up’s for the data and user interfaces (UI or user experience)? Look and feel stuff? Creative Specs?
2. Is it easy to use with and without training?
3. How many clicks does it take to complete the process?
4. Did you get an approval/sign-off on the user interface and design pieces? By the project manager, lead, and client?
5. What about page size and the amount of data? How are you going to show and/or display that?

Technical Specs (geared for developers and backend programmers):

1. Where do you start? What comes in the middle? And How do you finish or make sure that things are done correctly?
2. Are there certain things that need to be done in sequence?
3. Can I use any other pieces (reuse, copy, paste, alter, etc.)?

a. Is this a copy and paste job? If yes, from where? Was it cleaned up?
4. What about security and options?
a. Settings and Permissions? How flexible do we want to make it?

b. Is this a cross corp job? This involves more settings and permissions. We have to maintain the data integrity and security. Both parties need to opt in to the arrangement in one way or another.
5. Database planning? Create, Insert, Update, Views, or Alter?

a. If you are changing a database, did you script your changes? Did you think about any water already under the bridge (update older records)? What about new inserts? What about being able to update and/or edit values? What reports or select queries need the new data? What about web/API documentation and samples, did you cascade the new database stuff to things outside the secured environment?
b. What about defaults, validation, pagination, field length, and other details? Does the database match the UI (user interface)?
6. What about cascading new changes and code throughout the site and updating all older code? What other places does it touch (expand on direct touches, do some global searches, and think about cause and effects)?
a. When thinking of cascading code and features… Think about databases, page code, cfc’s, functions, ecommerce, web/API sockets, custom, black boxes, etc. Maybe go through each section and make a comment.
7. Is the project ready to hand off to someone else? If not, what else needs to be documented?

Documentation:

Prep and On Going:

1. What about research and looking at the backlogs?

2. What about recording the wish list items for the project? These are not part of the original scope but help us think beyond the current project (future development and ideas, expanded vision, how could it be more usable by other clients or industries, etc.).

3. What about other documentation? (did you record and attach emails, planning, scratch paper, test results, post-it notes, etc.)

Educational Documentation:
1. Help files?

2. News and updates? Help educate and promote the new features. Highlight new functionality.
3. Web/API documentation? (this is for outside developers who may be using our data as a service for their clients)
How (what is the process):

General Process Options and Styles:

1. What software development model are you looking to use? Scrum/Agile (focused sprints and rapid deployment), Waterfall (big design and then build – one shot), Spiral (tons of prototypes - build and break until you get a final product), Lean (do as little work as possible and keep it simple), Feature Driven (building blocks or one feature at a time), Just-In-Time (JIT) (plan and do as you go), or Fake It?

2. How are you going to break up and measure milestones, progress, and timelines?

3. How are you going to pay people on the project? What are the specifics: Bid, contract, hourly, commission, stepped (milestones), bonuses, etc.
a. How do you manage the balance between payment and deliverables including final stage stuff like code sign-off, education, and maintenance?
4. How is the client reacting to the process? As the project progresses, try to read what and how the client is feeling. Are they digging it, hating it, sick of it, frustrated, excited? Adjust as needed.
Brainstorming, Planning, Design, and Documentation Phase:

- “Make your plan and then work your plan.” Quote from Steve Berkenkotter
1. Remember to match the project development process with the client and the trust level of the client.
2. Remember to keep and save your emails. Possible suggestions:
a. Split up emails based on topics and minimize big long chains.
b. Have a good subject line to help with searching and organization.
c. Write as if each email will someday be read in court. We hope not, but you never know…
3. What is your plan for client communication? How often? Any key points or phases? What types of communication (email, phone, online meetings, texts, written, etc.)?
4. What issues might you encounter during the project (unknowns, new technologies, new code language, new area of adilas, etc.)? What is your plan to overcome and deal with these issues? Think risk management.

a. What happens if other projects come up or someone has to leave to do something else (sick, leave, quit, health issues, school, etc.)? What about a partially finished project and someone else needs to finish it? Think along these lines… maybe list the what if’s…
5. Is this project tight and specific (detailed specs) or is it more flexible (open to input/ideas)? How much freedom do we give the developers in the process? Is there a check-up and check-in type process? What is it (daily, weekly, other)?
6. What is your design prototype going to look like? Is it a wireframe (recommended), flowchart, graphic mock-up, static HTML page, or a sitemap? Was it approved (client, project manager, lead) and added to the project documentation?

a. When using a wireframe - use callouts to clarify and define functionality. Wireframes include blocks, specific functionality, lines, placeholders, explanations, instructions, and general flow. Don't worry about the graphics or colors. Keep it simple and unpolished. It is ok to keep it slightly rough. Allow for changes as needed.
7. Create use cases and scenarios that potential users would need to go through in order to use the product and/or features to achieve their goal. This will help others catch the vision of what is supposed to be happening with a product and/or feature.

a. Think of the bell curve type model – try to tackle the biggest part as a basic flow and then deal with the other exceptions. At some point, there will be a point of diminishing returns. Find the balance between normal and exceptions. Often, the final parts of the project take the longest and may be the hardest due to exceptions and special cases.
8. Did you attach all documentation to the project element of time? At the end, did you clean-up and push up the latest documentation?

a. You may need to decide if you are going to version or overwrite your documentation.

Implementation and Building Phase:

1. How well does each team member understand the project and the plan? Does it make sense to all parties? Maybe do some kind of a check for understanding (explain it back, have them talk about the vision and scope, expectations, etc.).
2. What is your building phase going to look like? What is your release and review process? This may be different per project. Where possible, we recommend a number of mini releases, demos, and multiple iterations. Get client feedback when and where possible (they like to see progress and be a part of the building process).
3. You are required to use Git and Bit Bucket. Are there any specifics on the version control for this project? For example: single branches, branches off of a main project branch, mixed branches, delayed merges, etc.

a. Anything that is core Adilas is required to be merged into the master branch. If it is fully custom or straight black box, we will leave it up to you. If it is merged into master, it stands a better chance of being updated if major changes or updates are needed. If left out of master, it is virtually on its own.

4. How are you going to deal with normal feature requests vs. a change request or change order? You need to have a plan to deal with change orders and feature creep. It is ok to draw lines and push things towards future projects as needed. Just be super clear. Take the time that is needed here, it can burn a major hole in your piggy bank if left out…
5. When meeting with a client and/or other players, you should have an agenda. Keep good notes and report any decisions, ideas, and changes. This is all part of your documentation and expectations. Think return and report.
6. Have you reread the documentation, requirements, meeting notes, changes, updates, and specs? How are you doing?

7. As you build and implement things, we highly recommend that you keep getting and recording ideas as they come up. Treat this kinda like “idea farming”. Let’s harvest those ideas (record them for the future)!

Testing, Review, and Sign-Off’s:

1. Did you go through the Adilas Developer’s Guide – Self Test? Can we break it? Did you go through it and bring it up to the standards?

2. Does it do what we want and need it to do (requirements)?
3. Did you run it through any use cases (story form – flow from the user’s views and needs)?

a. Did you have a fresh pair of eyes look at the project (someone not familiar with the project)? From start to finish? How much education was needed to get them going? What places did they fall off the road? How can we fix that? Maybe repeat as needed.

4. What about test cases (tests for users doing certain things) or unit tests (automated tests)? This is basically how does it work and are the requirements being met? Does it respond like you expected? This is specifically true for CFC’s and functions.

Deployment, Training, and Maintenance:

1. Is it really ready? Is it done or are you just done? Be honest… (
2. What is your maintenance plan? Future rounds? Next steps and improvements? Timeframes? Is it a standalone (do it once and don’t touch it again)? Does it tie into other projects?
4. What is your education and training plan? Do we need to let anybody know about the new features, code, or functionality? How are you going to roll out the training and education? Is there any marketing that needs to be done for this project? Are we talking help files, news and updates, demos, videos, keep it a secret (custom or internal), or other training?
Review other elements of time… and fill in where needed. Id’s: 2521, 2522, 2580
