Software Engineering Models
Predictive Models – when the scope of the project is known and will not need to change.
1. Waterfall – finish each step completely before moving on to the next (not very flexible)
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4335.jpg]
2. Waterfall with Feedback – same as waterfall, but can go up the waterfall when needed (but not advised)
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4336.jpg]
3. Sashimi – same steps of waterfall but you can move on to the next step before being completely done with the previous step.
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4337.jpg]
4. Incremental Waterfall – Start the next version before completing the current version. If you notice that your design/requirements aren’t right, you fix it in the next version not the current one.
a. Incremental waterfall model
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4338.jpg]
b. Incremental sashimi waterfalls
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4339.jpg]
5. V-Model – basic idea of waterfall but look at it as a process of breaking the dream down into details and then building it back out to the dream.
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4340.jpg]
Adaptive Models (iterative) – when the scope of the project is likely to change during development.
· Iterative (work on all features but at low fidelity) vs incremental (provide less features but with high fidelity) vs Agile (lowest features at low fidelity)
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4350.jpg]
1. Prototypes 
a. Horizontal – give user feel for what it will look like (frontend) not how it will function.
b. Vertical – no real UI but shows how program will work (backend)
2. Spiral – big focus is risk mitigation (not waterfall where you have to do 6 steps each time, can focus on a part of a single step or multiple steps each iteration). This gives the ability to make sure it is still on the right track after each iteration and the ability to scrap any given iteration.
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4342.jpg]
3. Unified Process – same idea as waterfall but different step naming and can work on multiple steps at the same time and out of order (i.e. testing the whole time). Also can have different number of iterations for each phase.
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4351.jpg]
[bookmark: _GoBack]Rapid Application Development (RAD) – release features in increments
1. James Martin RAD – constant user feedback during development.
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4344.jpg]
2. Agile
a. Values of Agile development
i. Individuals and interactions over processes and tools
ii. Working software over comprehensive documentation
iii. Customer collaboration over contract negotiation
iv. Responding to change over following a plan
b. Agile Techniques
i. Self-Organizing Teams – not assigned
ii. Communication – w/ users/client (almost constant)
iii. Incremental Development – build until enough to need a new release
iv. Focus on quality (since trying to do things so fast cant afford to have bugs)
3. Extreme Programming (XP)
a. Roles
i. Customer – defines requirements, makes sure meets user’s needs
ii. Tracker – monitors team progress
iii. Programmer – defines architecture and writes code
iv. Coach – helps team work effectively
v. Tester – helps customer write tests to look for missing requirements
vi. Administrator – keeps computers up to date
vii. * can combine roles but programmer shouldn’t be combined with customer, tester or tracker
b. Values
i. Communication – for requirements (simple, frequent and use metaphors)
ii. Simplicity – simple design first and more complex only when needed
iii. Feedback – unit and integration tests
iv. Courage - to make simple, refactor, throw away code, provide feedback
v. Respect – good code quality
c. Practices
i. Customer on site
ii. Planning game - stories on cards to decide how many to fit into that iteration
iii. Standup meetings – 15 min or less
iv. Frequent small releases
v. Intuitive metaphors – for communication
vi. Keep designs simple
vii. Defer optimization – only optimize if it is needed (saves time)
viii. Refactor when necessary
ix. Give everyone ownership of code
x. Use coding standards
xi. Promote generalization – everyone knows the whole system
xii. Pair programming
xiii. Test constantly
xiv. Integrate continuously – merge code into master and make sure it works
xv. Work sustainably – no more than 40 hour weeks (avoid burnout)
xvi. Test-driven and test-first development.
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4345.jpg]
4. Scrum
a. Roles
i. Product owner – sets requirements/priority/plans/releases
ii. Team member
iii. Scrum master – removes obstacles for team (not a project manager because of self-organizing teams, but takes the leadership role)
b. Scrum Sprints
i. Whole project is broken down into series of sprints (smaller projects)
ii. Typically a sprint is between 1 week and 1 month
iii. Daily scrum (10-15 min each day)
1. What did you do since last scrum?
2. What do you hope to accomplish before next scrum?
3. What obstacles do you see in your way?
iv. After Sprint Review meeting – lead by scrum master
1. What went well and how can we make it happen again?
2. What went poorly and how can we avoid that in the future?
3. How can we improve the next sprint?
c. Scrum Poker – game to determine how much work a particular task might be
i. Use cards based on Fibonacci sequence (0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89) or could round (0, 1/2, 1, 2, 3, 5, 8, 13, 20, 40, 100)
1. Also could include ?? card or some sort of card to indicate you need a break (coffee cup)
ii. Moderator leads – normally doesn’t play
1. Reads user story and brief discussion of restrictions, risks, assumptions (can be timed to make sure doesn’t take too much time)
2. All players decide how long they think the project will take and put that card face down
3. All players turn over cards at same time
4. Player with highest/lowest numbers are given soapbox to explain why they feel their estimate is correct.
5. Repeat steps 2-4 until group reaches consensus and write down projected time for that task.
d. Burndown – chart that shows amount of work remaining on a project as well as current progress based on scrum sprints
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4346.jpg]
e. Velocity – amount of work team can perform during a sprint.
5. LEAN – don’t do anything that doesn’t directly contribute to the project (including unclear requirements, unnecessary features, unnecessary repetition, unnecessary meetings
6. Crystal Clear (1-6 member teams) 
a. Criticality
i. Comfort
ii. Discretionary money
iii. Essential money
iv. Life
b. Roles
i. Sponsor – client/user
ii. Senior designer – makes design/technical decisions
iii. Programmer
7. Feature-Driven Development
a. Dream up the whole system (features) at the beginning
b. Then build them out one feature at a time until system is complete
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4347.jpg]
8. Agile Unified Process (AUP) – Same as Unified Process but have several smaller releases instead of just one big release at the end.
9. Dynamic Systems Development Method (DSDM)
a. Phases
i. Pre-project – figuring out possible projects, approval, funding, etc.
ii. Project life-cycle
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4348.jpg]
iii. Post-project – maintenance
b. Principles 
i. Active user involvement
ii. Team empowerment – authority to make design decisions
iii. Frequent delivery
iv. Meet business needs – requirements
v. Iterative and incremental – provide for quicker delivery/feedback
vi. Reversible changes 
vii. Constant testing
viii. Collaboration and cooperation
ix. Requirements are refined
x. The 80/20 rule – get 80% features in (takes 20% of time) and save last 20% (80% of time) for later releases to get features out quicker.
c. Roles
i. Executive sponsor - funder
ii. Visionary – clear vision of application
iii. Ambassador user – liaison between users and developers
iv. Technical coordinator – overall design/architecture
v. Developer
vi. Tester
vii. Project manger

10. Kanban – Just-in-time (JIT) production methodology (not necessarily process)
a. Practices
i. Visualize workflow
ii. Limit work in progress (WIP) – help with task switching
iii. Enhance flow – when task is finished grab next-highest priority task
1. Different from sprints because never doing multiple tasks at a time
b. Kanban Board – want as few items in shaded zones as possible at a given time.
[image: C:\Users\Alan\AppData\Local\Microsoft\Windows\INetCache\Content.Word\IMG_4349.jpg]
image6.jpeg
Time





image7.jpeg
Version 3

Version 3

Version 2

Version 1

ey A (]

Aepiy

|

F

Auepig

Ayopiy

ennvipeIg

sAneIa)

IR3uswasu

a6y




image8.jpeg
1. Determine objectives,
alternatives, and A
constraints.

2. Risk analysis, Evaluate
alternatives, Identify
and resolve risks. Build a
prototype.

Prototype 2
Prototype 1

4. Plan the next
iteration.

J

3. Use the prototype to
perform simulations and
model problems. Fix
problems and produce a

result.




image9.jpeg
Business Modelling

Requirements
Analysis and Design
Implementation
Test

Deployment

Phases

Inception Elaboration Construction Transition

H
'
|
H
i
|

Inception

|terations




image10.jpeg




image11.jpeg
Pick a new
function

Write a test for
the function

Does the code
pass the test?

Write code

Does the code
pass all tests?

Refactor as
needed





image12.jpeg
o |deal
=& Actual

\

Boppeg ui sujog hioyg

"

10

Sprint




image13.jpeg
Iteration 0





image14.jpeg
Functional

Model Implementation |

Design
and
Build




image15.jpeg
pakojdeg

<
L

m Apeay
e
=

s8] @ouerdanoy

//4

1s9] uoneibaju|
~
10
©
=

E 1831 1un
o
-]
(9]

Bupoy

m uBisag
=1
aQ
)
<]
oz

Boppeg





image1.jpeg
Implementation

Verification

Deployment




image2.jpeg
Deployment

A5




image3.jpeg
Requirements

Implementation

Verification

Deployment

Maintenance





image4.jpeg
1. Requirements
2 Design

3. Implementation
4. Verification

5. Deployment
6. Maintenance

Increment 3

Time





image5.jpeg
Increment 1

1. Requirements
2. Design
5 3. Implementation
7 4. Verification

5. Deployment
6. Maintenance

Increment 2

Increment 3





