Adilas.biz Concept Sign-Off Doc
· Does it work?

· Can you make it fail?
· Hit all if statements and error messages
· We param all incoming values
· We like to run validation on all incoming FORM and URL params
· If using both FORM and URL, does your page switch or favor one scope or another? Is that clear where that switch happens?
· We Scope all variables – variables, FORM, URL, session, arguments, application, CGI
· One exception is in CFC’s. We usually don’t use the variables scope (for local vars). We do use the arguments scope in CFC’s.
· What about try/catch blocks and other general error handling?
· Often we use try/catch blocks for queries, special logic, outside API socket calls, or places where we may not get everything we are looking for.
· How much data did you use for checking things? Is this typical of the live environment? What about pagination? Anything over 200 records needs pagination.
· Did you test for different values such as positives, negatives, zeros, strings, blanks, numerics, dates, and other possible hacks, etc.? Think different/random scenarios or different use cases.

· How are your comments?
· Did you add a modified page log (at the top)?
· We comment everything… this helps ourselves, other developers, and even our clients.

· Did you re-read it and clean it up?
· Check for extra dumps and aborts
· Whitespace
· Check for extra variables or un-used code
· Did you copy and paste from another spot? Did you need everything that you copied?
· Alphabetizing things
· We alphabetize params, method call arguments, queries (big selects, inserts, and updates), etc. If there are more than 3 of them, we probably want them alphabetized.
· Trimming things
· We trim in and out of method calls
· Any time we get URL or FORM scope stuff – any user input
· All database inserts and updates. Keep the data clean and tight.
· We don’t trim full structures or arrays. That causes problems.
· Naming convention
· Do your variables make sense?
· Recommendations: use all lower case, camelCaseStuff, or use_under_scores
· All queries start with “qry” – qryGetCustomers or qryCheckTemplates.
· All database fields are all lower case with under scores
· We like structures to have an “_st” at the end – myTemp_st or lineItems_st
· We like arrays to have an “_array” at the end – my_sample_array or myMasterHolding_array
· We like lists to have an “_list” at the end – temp_id_list or customerId_list
· Most CFC’s, methods, and function arguments have the camelCaseVersion of the actual field name (where possible). For example: the database field is first_name, the argument would be firstName
· Most page names are all lower case with underscores – index.cfm or add_edit_custom_settings.cfm
· [bookmark: _GoBack]Most action pages end in “_action.cfm” – add_edit_time_action.cfm or update_settings_action.cfm
· Please watch out for reserved words or words that may be used in code. If needed, add the phrase “temp”, “current”, “my”, or “use” to help those values out. Example: useDate, tempStatus, currentId, etc. You get the idea.
· Did you retest it? Please make sure it still works after you have modified it.

· How tight and good are your queries?
· How are your joins?
· How many records are you expecting?
· Did you check for 0 record count?
· Did you check for a single record count?
· Did you check for multiple records?
· Did you limit by corp?
· Did you limit by a status field?
· Remember single quotes for strings, CreateODBCDate stuff for dates, etc.
· Did you put an order by clause (if more than one possible record)?

· How is the formatting and CSS stuff?
· Does your code match the existing style and/or design of the system?
· All div tags and tables need classes. The most common is “basicText” if unknown. See this reference guide if more classes are needed:
· https://www.adilas.biz/css/
· What about the different preset themes?
· Does it work on the different themes?
· Classic
· Geometry, Blue Pastel, The Project, Armored Car
· AFB Snow Owl – as a note, this one does go a little bit deeper for a more modern look and feel (mobile ready and such)

· On CFC’s (coldfusion components – methods and functions)
· Did you declare the local vars?
· All error messages are returned as a structure vs. a page include/abort.
· When calling a CFC or a method, use the a path similar to: component="#application.pathToMainCFCs#.security_2" – this is on normal .cfm pages and when components call other components.
· If changing a method, did you search to see where else the method is used?
· Did you update all other occurrences of the method call?
· What about in the Web/API land? Did you update things there?

· Did you script any database changes?

· What about documentation? Help files? Web/API documentation? Etc.

· Code What about Git, Bit Bucket, Branches, and Pull Requests?
· Did we clean that up?
· Was it merged with master?
· Was it signed off?
· At least two sets of eyes per page (peer reviewed)?
· Tested before going live and hopefully tested on another machine?
· Let’s make sure we are delivering good stuff.
· Was it pushed to live servers?
· Which one(s)?
· When was it pushed (we try to push in non peak times – we have had disasters pushing right in rush hour traffic – especially for customer, invoice, quote, and cart stuff). Peak usage times are between 9 am and 9 pm. Best times are early in the morning or way after normal business hours. Some of the clients are open until midnight.

· Are your pages black boxed? If yes, did they follow standards.
· If breaking pages into sub pages. You may need to add an additional ../ to any error messages to get paths right. Please test and hit the error messages if breaking a page apart.
· Example: <cfinclude template="../../message.cfm">
· Convert all CFC paths to the #application.pathToMainCFCs#.some_page path (more details above in the normal to do list)
· Check for the word “black” to see if there is any older black box code that needs some lovin’. Please fix and bring all older code into compliance.
· Check for “mainNavMenu”. If yes, change the div tag to:
· <div id="mainNavMenu" style="display:none">
· Get rid of the javascript at the bottom that forces the display to hidden. This is for icon menus.
· When debugging the page, check to make sure that all eight standard black box pieces are being pulled in. See top_secret/secure/GetSecurePaths.cfc for more info. The normal eight are:
1. full - custom logic and/or a full take over - this is above any html tags
2. top - start of html to start of body tag - css, scripts, meta tag stuff
3. header - below the body tag - repeating logos and navigation for each page
4. top_mini - optional - below the header and above the main page content
5. body - main meat and/or content for the page
6. bottom_mini - optional - below the main meat or content and above the footer
7. footer - repeating logos and navigation
8. bottom - closing body and closing html tag - any special scripts that are needed
· Action pages usually only have two black box pieces. They are a full takeover and a bottom mini.
· If using the “getCustomLogic” method, please provide a sample of what the page path would look like. This is a custom black box option. See the top_secret/secure/update_cart.cfm page for samples. Just search for “getCustomLogic” to see a couple examples.
· Also, make sure any date fields have the datepicker class applied. This helps us show date pickers vs. static text fields. Sample:
· <input type="text" name="start_date" value="" class="datepicker" />

///
Still working below here…
· Actual sign-off is making sure things are sound and good to go

· When quoting projects, include testing, code review, and sign-off

· What about plans and project management? Maybe require for bigger projects.

· Ideas for core projects…

· All projects need to be communicated to Brandon, Alan, and Nick – no matter what (internal communication) – Could be a text or an email
· Is the project fully custom or does it have core elements? If fully custom, you can run with it on your own. If it is a core piece, you have to at least reach out and let us know and we’ll determine if it is simple or needs to follow the main process.
· All projects are tracked through elements of time
· All projects need a plan
· All projects need a sign-off on the plan
· Brandon, Alan, Nick
· Maybe use Russell to help coordinate things
· List the Bit Bucket branch on the element of time
· We build the project
· Do the self-check list for pre-sign-off
· This is what we look for on a sign-off process
· Compare the plan with what really happened – Update as needed
· All projects need a sign-off/peer review when done (full sign-off, merging, and clean-up)
· Brandon, Alan, Nick
· Final check list and payment
· Communication back out to the developer (email, text, or pointing them to the element of time)

· Time lines – approvals, sign-offs, merging, getting paid?

· Sub sign-offs
· Exports to excel
· Sub assignments (rentals, reservations, adoption process)
· Sub reminders (queue needs to watch – push technology)
· Sub payroll

Custom code – logic CF, jS,
Custom look and feel
	UI, CSS, custom reports, dashboards,
Custom storage of data - db

Our code is one of many (testing ground)
Concepts we are built on and trying to build - (10-1 – my goal)
