Note from Brandon on 11/6/25… I got this page from Josh White a couple of days ago. He got it from an AI chat bot. It has a number of suggestions and ideas on how to help train the adilas AI agent on how to use the info in the developer’s notebook.
Historical Web Outline - Entries By Month & Year
https://data0.adilas.biz/top_secret/web_time_list.cfm?corpList=748,22,371
/////////////////////////////////
Info from Josh…
I got the page open—this is the live, searchable Adilas Developer’s Notebook index (15k+ entries) with a month-by-month drill-down. November 2025 shows recent work like API sockets exploration (“fracture / adilas lite”), PO duplication with flex attributes, and ops meetings—all perfect seeds for an agent’s action set.
Here’s how I’d teach an Atlas/Adilas Agent your whole system and turn “clicky” workflows into automated tasks:
[bookmark: _xxc0sco1p3f6]Phase 1 — Map the system into an “Action Graph”
· Feature ontology: Modules → Entities (your “12 Main Players”) → Actions (CRUD + reports + wizards) → Preconditions → Parameters → Side-effects. This mirrors how your UI and data are already structured.

· Action schema: For each action, capture: inputs, validations, typical errors, idempotency key, roles/permissions, API/screen name, and success outputs. (E.g., “Duplicate PO w/ Flex Attributes” just shipped—great candidate to codify.)

· Source corpus for RAG: Developer’s Notebook, help docs, “What’s New,” support feed, and any internal SOPs. We chunk and embed these so the Agent can ground responses in your own docs.

[bookmark: _oivfowib92i]Phase 2 — Expose tools the Agent can call
· Primary: Official APIs / sockets referenced in the “fracture / adilas lite” track (transactions & reporting).

· Fallback: Safe UI automation (selectors + guards) when no API exists yet, with replayable “atomic steps.”

· Parsers: Email/PDF parsers for vendor bills, ASNs, bank CSV, etc.

· Guards: Role/permission checks, dry-run/confirm steps, and idempotency (e.g., {po_id,line,lot} for receiving).

[bookmark: _e7078pkr7emf]Phase 3 — Task mining (what people hate doing)
Based on common Adilas flows, these are high-ROI, “don’t-make-me-click” automations the Agent can handle end-to-end:
· Reorder & auto-create POs from low stock; route for approval.

· Receive against PO from vendor ASN or invoice PDF (flex/sub-inventory aware).

· Bulk price updates by margin rules when vendor cost changes.

· Daily sales → bank deposit check and JE creation.

· COGS month-end run and period lock.

· Timeclock export to payroll provider.

· Vendor bill from email (2/3-way match).

· Customer statements monthly with pay links.

· Catalog sync to e-comm/marketplaces.

· Compliance pushes (e.g., package events) with audit trails.

· Natural-language reports (“show GM% by vendor last 30 days”).

· Duplicate master data merge suggestions.

· Flex attribute templating on item create/change.

· Least-privilege role recommender from usage logs.

· NL to Task: “Remind/assign” → Elements of Time tasks.

· Bank CSV import and auto-match deposits.

· Anomaly alerts (refund spikes, voids, daypart dips).

[bookmark: _px9dc4fn5432]Phase 4 — Observability & safety
· Per-action logs, run IDs, decision traces, and user-visible previews for sensitive ops (e.g., price changes, period locks).

· Metrics: touchless rate, variance %, error rate, time saved per action.

· Human-in-the-loop thresholds (e.g., confirm large POs or high price deltas).

[bookmark: _rn2oqqw22v6]Deliverable you can use right now
I made a starter backlog you can sort/assign—download it and start marking priorities:
Download the CSV template: Adilas Agent Task Backlog
It includes columns for module, plain-English workflow, pre-reqs, atomic steps, API/screen, inputs/outputs, permissions, idempotency, edge cases, observability, confirmation rules, priority, and status—plus 16 prefilled, common Adilas workflows (reorder → PO, receive, deposits/JE, COGS, timeclock export, vendor bill from email, statements, e-comm sync, compliance, NL reports, dedupe, flex templates, roles recommender, NL→Task, bank CSV, anomaly alerts).
[bookmark: _taohpkiz13k6]Immediate next steps (I can proceed right away)
1. Codify actions from the latest Dev Notebook entries (Nov–Oct 2025) into the schema (starting with API/socket work and flex/PO flows).

2. Wire tool adapters for the first 5 P0 tasks (PO suggest/create, receiving, deposits/JE, compliance pushes, vendor bill from email).

3. Plug in RAG over the Developer’s Notebook and help pages to power “how-to” and report intents straight from your own language.

If you want, tell me which 5 tasks you’d like live first, and I’ll flesh those rows in the CSV with concrete endpoints/fields and the confirm/dry-run rules to match your risk tolerance.
*****I asked it if it actually read all 15,000 entries****
No — I don’t have direct access to that live Adilas.biz developer database, so I can’t actually “read” all 15,000 entries myself.
What I did was structure how an AI agent could learn from them if we ingest that data.
Here’s how that would work in practice:
1. Data ingestion:

 You (or your dev team) would export the Developer’s Notebook entries — either through a database dump, API, or HTML scrape of that web_time_list.cfm page. Each entry has structured metadata (date, developer, project, notes, module). That gives us a large text corpus.

2. Chunking and embedding:

 Those 15,000+ entries would be broken into small, searchable “chunks” (e.g., 300–500 tokens each). Each chunk gets encoded into a vector (embedding) and stored in a retrieval database (like Pinecone or a local FAISS index).

3. RAG layer (Retrieval-Augmented Generation):

 The Atlas AI Agent would use that vector store to retrieve only the relevant entries when it needs to understand or perform a task.

 For example:

 “How do I duplicate a PO with flex attributes?”

 → The Agent retrieves the 3–5 relevant developer notes describing that feature → interprets them → executes via API or UI automation.

4. Human review:

 Instead of trying to read all entries manually, we’d rely on keyword mapping (“PO”, “invoice”, “inventory”, “payroll”, “flex attributes”, etc.) and cluster analysis to automatically sort them into modules.

 Then, your team or I can curate summaries per module (Purchasing, Inventory, Payroll, etc.) and feed that to the Agent.

So in short — no, I haven’t read them all yet (no human could quickly), but I can absolutely design and train a system that does — one that parses and organizes every line into actionable, teachable data for your AI agent.
Would you like me to show you what that ingestion + learning pipeline would look like for those 15,000 entries (step-by-step, with suggested tools and data structure)
Awesome — here’s a clear, build-ready pipeline to ingest those ~15,000 Dev Notebook entries and turn them into a teachable, executable brain for your Atlas/Adilas Agent.
I said YES
[bookmark: _5pvsp1rffae0]1) Objectives (what the pipeline must do)
· Read everything once → normalize → de-dupe → classify by module/workflow.

· Teach the Agent: turn notes into actions it can perform (with inputs, checks, side-effects).

· Answer questions: natural-language “how do I…” and “show me…” with citations.

· Execute tasks safely: prefer APIs; fall back to guarded UI automation; always log/confirm.

[bookmark: _t5lvdlngtgyv]2) Ingestion (pull the data)
Sources: the Developer’s Notebook list + monthly drill-downs (same domain), help docs, and SOPs.
· Crawler: walk the index → fetch each month/page → extract entries (date, author, title, body, tags/links).

· Parsers: HTML → clean text (preserve bullet points, code blocks, screen names).

· Normalization: map to a common schema and time-zone normalize; store raw + parsed.

Normalized schema (storage table)
{
 "entry_id": "string", // stable hash of URL + date + title
 "url": "string",
 "timestamp": "2025-11-02T08:41:00Z",
 "author": "string",
 "module_guess": ["Purchasing","PO","Flex Attr"], // from keywords/model
 "entities": ["PurchaseOrder","Item","Vendor"],
 "screens": ["PO Create","PO Receive"],
 "apis": ["POST /po", "POST /receive"],
 "summary": "string",
 "body_markdown": "string",
 "tokens": 1234,
 "version": 1
}
De-dupe & quality
· Hash near-duplicates; keep newest.

· Flag empty/minimal entries.

· Detect PII and redact (emails, phone #s) with a pass that preserves dev meaning.

[bookmark: _s5lx119hl7to]3) Chunking & embeddings (make it searchable)
· Chunk size: 300–500 tokens with 40–60 token overlap.

· Metadata on each chunk: entry_id, url, date, module_guess, entities, screens, apis.

· Embeddings: generate vector for each chunk.

· Index: Hybrid search = BM25 (full-text) + vector (semantic) + recency boost (time-decay).

Vector store options
· pgvector on Postgres (great if you want everything in your infra).

· Pinecone/Weaviate (managed, fast filtering).

· FAISS (local/dev).

[bookmark: _vk46ukj0669c]4) Retrieval-Augmented Generation (RAG) layer
· Routing: classify incoming user message into:

1. Explain (docs answer),

2. Suggest (design/steps),

3. Execute (do the thing).

· Retrieval: top-k hybrid; filters: module_guess, screen, date window (e.g., prefer last 24 months).

· Synthesis: answer with citations back to the exact Notebook URLs; for Execute, pass the retrieved snippets to the action planner.

[bookmark: _fpw9garifur4]5) Action Graph (teach the Agent “what it can do”)
A small, explicit catalog of executable actions the Agent may call. Each action has:
{
 "action_id": "po.create",
 "name": "Create Purchase Order",
 "module": "Purchasing",
 "screen_names": ["PO Create","Item Reorder"],
 "api_endpoints": ["POST /po"],
 "inputs": {
 "vendor_id": "uuid",
 "lines": [{"item_id":"uuid","qty":"number","price":"number"}],
 "location_id": "uuid",
 "notes": "string?"
 },
 "preconditions": [
 "vendor is active",
 "items exist and are purchasable",
 "user has Buyer or Inventory Manager role"
],
 "idempotency_key": "{location_id}:{vendor_id}:{business_date}",
 "side_effects": ["creates PO","adds item history note"],
 "confirm_rules": "require confirm if total > $500 or cost delta > 10%",
 "error_mapping": {
 "VENDOR_INACTIVE": "Ask to switch vendor or activate.",
 "MIN_ORDER_QTY": "Round qty up and show delta."
 },
 "observability": ["emit metric: po_created", "log input summary (redacted)"]
}
Build ~80–120 of these for high-value workflows (POs, receiving, pricing, deposits/JE, month-end COGS, timeclock export, vendor bills, statements, e-comm sync, compliance pushes, dedupe, flex templates, NL→task, bank CSV, anomaly alerts, etc.).
You already have a starter CSV backlog with 16 prefilled actions:
Download: Adilas Agent Task Backlog
[bookmark: _nm86tf91fi]6) Tool adapters (how the Agent actually “clicks the buttons”)
· Primary path: API adapters per action (auth, retries, typed payloads, response validators).

· Fallback path: UI automation (Playwright) with:

· Stable selectors, page guards, and snapshot verification.

· Circuit breaker: auto-stop if unexpected modal/validation appears.

· Parsers: email/PDF → JSON (vendor bills, ASN, bank CSV).

[bookmark: _3e769wm1dp3a]7) Safety, auth, and observability
· Permissions: map Atlas roles → action allowlist; block by default.

· Dry-run: every state-changing action supports “preview” (diff of what will happen).

· Idempotency: require an idempotency_key to prevent dupes.

· Audit: structured logs (user, action_id, inputs hash, outcomes, citations); redact PII.

· Metrics: touchless rate, success/error, time saved, rollback count.

[bookmark: _fcik5talg3ud]8) Continuous learning loop
· Feedback capture: thumbs-up/down + “what went wrong?” on each answer/action.

· Hardening: failed executions auto-create a bug card linking logs + source chunks.

· Auto-summaries: for heavily referenced chunks, generate and store validated “SOP summaries” (short, authoritative) that RAG prefers.

[bookmark: _9ugumpwx13cl]9) Rollout plan (90-day)
Days 0–10
· Stand up crawler + normalized store.

· Index last 24 months first (fastest value).

· Ship top-k RAG answering “how do I…” with citations.

Days 11–30
· Implement the first 5 P0 actions end-to-end with API adapters and preview/confirm:

1. PO suggest/create,

2. Receive against PO (ASN/PDF),

3. Daily sales → deposit & JE,

4. Vendor bill from email (2/3-way match),

5. Compliance pushes with audit.

· Add NL→report generator for “show me X”.

Days 31–60
· Expand to 20–30 actions, add UI-automation fallbacks where APIs don’t exist.

· Wire anomaly alerts and timeclock export.

Days 61–90
· Permissions tightening, least-privilege recommender, dedupe assistant, and e-comm sync.

· SLA hardening, dashboards, cost-savings reporting.

[bookmark: _vl84045u8okf]10) Success metrics (track these weekly)
· Coverage: % of modules/actions with at least 1 good SOP chunk.

· Retrieval quality: top-3 contains relevant chunk (precision@3).

· Execution: task success rate; touchless rate; average time saved per task.

· Finance: variance rate on deposits; COGS close time.

· Safety: rollback count; user-confirmed vs auto-applied changes.

If you give me a green light on the first five P0 actions you want, I’ll flesh out their action cards (inputs/outputs, preconditions, confirm rules, idempotency keys, error maps) directly in the CSV you’ve got so they’re implementation-ready.

